10 research outputs found

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Paravirtual Remote I/O

    No full text

    Parallelizing More Loops with Compiler Guided Refactoring

    No full text
    The performance of many parallel applications relies not on instruction-level parallelism but on loop-level parallelism. Unfortunately, automatic parallelization of loops is a fragile process, many different obstacles affect or prevent it in practice. To address this predicament we developed an interactive compilation feedback system that guides programmers in iteratively modifying their application source code. This helps leverage the compiler\u27s ability to generate loop-parallel code. We employ our system to modify two sequential benchmarks dealing with image processing and edge detection, resulting in scalable parallelized code that runs up to 8.3 times faster on an eight-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should be combined with target-specific optimizations. Furthermore, comparing the first benchmark to manually-parallelized, hand-optimized pthreads and OpenMP versions, we find that code generated using our approach typically outperforms the pthreads code (within 93-339%). It also performs competitively against the OpenMP code (within 75-111%). The second benchmark outperforms manually-parallelized and optimized OpenMP code (within 109-242%)

    GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral Compilation

    Get PDF
    International audienceModern compilers are responsible for adapting the semantics of source programs into a form that makes efficient use of a highly complex, heterogeneous machine. This adaptation amounts to solve an optimization problem in a huge and unstructured search space, while predicting the performance outcome of complex sequences of program transformations. The polyhedral model of compilation is aimed at these challenges. Its geometrical, non-inductive semantics enables the construction of better-structured optimization problems and precise analytical models. Recent work demonstrated the scalability of the main polyhedral algorithms to real-world programs. Its integration into production compilers is under way, pioneered by the Graphite branch of the GNU Compiler Collection (GCC). Two years after the effective beginning of the project, this paper reports on original questions and innovative solutions that arose during the design and implementation of Graphite
    corecore